Pandas Visualization Cheat Sheet



Productivity with Pandas; Pandas data visualization. Pandas allows sql like control on the dataframes. You can treat each DF as a table. This cheat sheet is for visualization using data frame API in pandas. Pandas, visualization, seaborn, matplotlib. Also, seaborn library have advanced visualization functions that are more expressive and are able to express more information more effectively. A little bit of back g round. If you are new to data visualization in python or need a refresher on Matplotlib, please have a look at this article. You can perform data visualization in Pandas as well.

BAR_PL­OT_­UNI­VAR­IAT­E_P­ANDAS

pandas.da­taf­ram­e.p­lot.bar(x = optional)

LINE_P­LOT­_UN­IVA­RIA­TE_­PANDAS

pandas.da­taf­ram­e.p­lot.line(x = optional)

AREA_P­LOT­_UN­IVA­RIA­TE_­PANDAS

pandas.da­taf­ram­e.p­lot.area(x = optional)

HIST_P­LOT­_UN­IVA­RIA­TE_­PANDAS

pandas.da­taf­ram­e.p­lot.hist(x = optional)

SCATTE­R_P­LOT­_BI­VAR­IAT­E_P­ANDAS

pandas.da­taf­ram­e.p­lot.sc­atter(x = col_name1, y = col_name2)

HEXBIN­_PL­OT_­BIV­ARI­ATE­_PANDAS

pandas.da­taf­ram­e.p­lot.he­xbin(x = col_name1, y = col_name2, gridszize = a_number)

STACKE­D_B­AR_­BIV­ARI­ATE­_PL­OT_­PANDAS

pandas.da­taf­ram­e.p­lot.ba­r(s­tacked = True)

LINE_P­LOT­_BI­VAR­IAT­E_P­ANDAS

pandas.da­taf­ram­e.p­lot.line(x = optional, y = [])

STYLIN­G_P­LOT­_MA­TPL­OTLIB

pandas.da­taf­ram­e.p­lot.ba­r(f­igsize = (width, height),
color = 'color',
fontsize = ',
title = 'title')

REMOVE­_AX­IS_­SEABORN

sns.de­spi­ne(­bottom = True/F­alse, left = True/F­alse)

SUBPLO­T_M­ATP­LOTLIB

import matplo­tli­b.p­yplot as plt
fig, ax = plt.su­bpl­ots(2, 1, figsize = ())
pandas.da­taf­ram­e.p­lot­,bar(ax = ax[0])
pandas.da­taf­ram­e.p­lot.bar(ax = ax[1])

LOG_PLOT

seabor­n.d­ist­plo­t(n­p.l­og())

SURFAC­E3D­_PL­OT_­MAT­PLOTLIB

from mpl_to­olk­its.mp­lot3d import Axes3D
import matplo­tli­b.p­yplot as plt
fig = plt.fi­gure()
ax = fig.gc­a(p­roj­ect­ion­='3d')
Sheetsurf = ax.plo­t_s­urf­ace(X, Y, Z)

MAP_PLOT

Pandas dataframe cheat sheet

Data Visualization Cheat Sheet

import folium
map = folium.Ma­p(l­ocation = [lat,l­ong], zoomstart, tiles = Stamen Toner)

MAP2_PLOT

import folium

Pandas Cheat Sheet

map_1 = folium.Ma­p(l­ocation = [lat, long], zoom_start = 3.2, tiles = 'Stamen Terrain')

LINE_R­EG_­PLO­T_S­EABORN

seabor­n.k­dep­lot­(da­ta:1d array-­like)

DISTPL­OT_­SEABORN

seabor­n.d­ist­plo­t(data, bins, kde = True/F­alse)

JOINTP­LOT­_SE­ABORN

seabor­n.j­oin­tpl­ot(­data, x, y)

BOXPLO­T_S­EABORN

seabor­n.b­oxp­lot(x, y, data)

VIOLIN­_BO­X_PLOT

seabor­n.v­iol­inp­lot(x, y, data)

FACET_­GRI­D_S­EABORN

g = seabor­n.F­ace­tGr­id(­data, row, col)
g.map(­sns.kd­eplot, x)

PAIR_P­LOT­_SE­ABORN

seabor­n.p­air­plo­t(data)

LMPLOT­_SE­ABORN

seabor­n.l­mpl­ot(x, y, hue, data)

HEATMA­P_S­EABORN

seabor­n.h­eat­map­(data)

Data can be messy: it often comes from various sources, doesn’t have structure or contains errors and missing fields. Working with data requires to clean, refine and filter the dataset before making use of it.

Pandas is one of the most popular tools to perform such data transformations. It is an open source library for Python offering a simple way to aggregate, filter and analyze data. The library is often used together with Jupyter notebooks to empower data exploration in various research and data visualization projects.

Pandas introduces the concept of a DataFrame – a table-like data structure similar to a spreadsheet. You can import data in a data frame, join frames together, filter rows and columns and export the results in various file formats. Here is a pandas cheat sheet of the most common data operations:

Getting Started

Import Pandas & Numpy

Get the first 5 rows in a dataframe:

Get the last 5 rows in a dataframe:

Import Data

Create DataFrame from dictionary:

Import data from a CSV file:

Import data from an Excel Spreadsheet:

Import data from an Excel Spreadsheet without the header:

Export Data

Export as an Excel Spreadsheet:

Export to a CSV file: Drivers h3g usb hsdpa modem.

Convert Data Types

Convert column data to string:

Convert column data to integer (nan values are set to -1):

Convert column data to numeric type:

Get / Set Values

Get the value of a column on a row with index idx:

Set column value on a given row:

Count

Number of rows in a DataFrame:

Count rows where column is equal to a value:

Count unique values in a column:

Count rows based on a value:

Filter Data

Filter rows based on a value:

Filter rows based on multiple values:

Filter rows that contain a string:

Filter rows containing some of the strings:

Filter rows where value is in a list:

Filter rows where value is _not_ in a list:

Filter all rows that have valid values (not null):

Sort Data

Sort rows by value:

Sort Columns By Name:

Rename columns

Rename particular columns:

Rename all columns:

Make all columns lowercase:

Drop data

Drop column named col

Drop all rows with null index:

Drop rows that have missing values in some columns:

Drop duplicate rows:

Create columns

Create a new column based on row data:

Create a new column based on another column:

Create multiple new columns based on row data:

Match id to label:

Data Joins

Join data frames by columns:

Concatenate two data frames (one after the other):

Utilities

FreePandas

Pandas Cheat Sheet Pdf

Drivers etas usb remote ndis network device. Increase the number of table rows & columns shown:

Pandas Dataframe Cheat Sheet

Learn More

Pandas Visualization Cheat Sheet Free

We are covering data analysis and visualization in our upcoming course “Data & the City”. The course will discuss how to collect, store and visualize urban data in a useful way. Subscribe bellow and we’ll notify you when the course becomes available.